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AbstraeL lhe charged oscillator, defined ty the Hamiltonian H = -d2 /dr' + r2 + X p  
m the domain [ O ,  m], is a panicular case of the famiiy of spiked oacillalon, which does 
not behave as a supersingular Hamiltonian. l h i s  problem b analysed around the three 
regions X - cq X - 0 and X - -m by using Rayleigh-Rilz large-ordcr penurbtive 
expansions. A palh is found U) mnnecf the large X regions wilh the small X region by 
means of the renormalization of the serie~ orpansions in A. finally, lhe Riccali-Pad6 
melhcd is used 10 mnS1ruct an implicit Pxpansion around X - 0 which mends IO vely 
large values of 1x1. 

1. Introduction 

?he family of quantum Hamiltonians h o w n  with the name of $ked harmonic 
arcilIalors is represented by the general Hamiltonian 

dZ x 
H = -- + r Z +  - drz ra 

defined in the one-dimensional half space 10, m], the eigenfunctions obeying Dirichlet 
boundary conditions. The Hamiltonian is characterized by means of two parameters, 
X which plays the role of a coupling constant and a 3 0 which controls the type of 
the singularity of the potential at the origin. 

The study for small X reveals the presence of two different behaviours depending 

series expansion in terms of A. Not very much is h o w n  about these expansions for 
a < 5/2,  with the exception of the exactly solvable case a = 2, which generates a 
series expansion in powers of A, its radius of convergence being 1/4. Nevertheless, 
plain application of the FbyleighSchrddinger perturbation theory does not generate 
the correct perturbative corredions to the wavefunction [l]. 
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The region a 2 5/2 is known by the name of supersingular. Klauder [2] 
and Detwiler and Klauder [3] realized that problems of this kind, or with similar 
behaviour, had very special properties in the smallcoupling regime. Later, Harrell 
[4] was able to construct a special form of singular perturbation theory to determine 
the leading term of the ground-state energy for small A, which turned out to depend 
on non-integral powers of the coupling parameter or even on logarithms of the 
coupling constant. Only wry few terms of the expansion may be determined by using 
the method of Harrell [4]. Nevertheless, it is a simple task to generate many terms of 
the expansion in terms on an effective coupling constant in the strong-coupling regime 
[5, 61, ie. for very large values of A. 

Our interest in the family of spiked oscillators was motivated by the analogy 
between the a = 5/2 small-coupling expansion [4] 

and the lowdensity expansion of the energy per particle of a many-body boson system 
at zero temperature [7] 

E / N  = (2 r f i2 /m)pa  [I + c,(pa3)1/2 + ~ , p a 3 1 n ( p a ~ )  + c3pa3 t . . . 1 (3) 

where p is the particle density and a is the scattering length of the two-body problem 
with the bare interaction. Similar expansions have also been obtained for fermion 
systems [7]. 

The low-density expansions are not immediately useful for studying real many- 
body systems, in particular because in most cases the scattering length corresponding 
to the two-body system may be negative, so that equation (3) is meaningless. However, 
the use of constructive extrapolants, mainly based on Pad6 approximans of non- 
integral powers of the series equation (3), bas proven to be a ve'y precise method 
to determine the equation of state of several quantum systems near the equilibrium 
density (8-101. For this reason, our interest will be focused on the study of connections 
between the expansions determined around finite (actually null) and infinite values 
of A, for a given value of the exponent a. 

In this work we are going to concentrate on a very simple case, namely a = 1. 
The Hamiltonian equation (1) looks extremely simple, being a confined Coulomb 
potential, 

The amount of information which may be obtained for this simple spiked oscillator 
is quite impressive. First of all, it is possible to obtain perturbative expansions for the 
ground-state energy (and also for excited states) around X -+ m as well as around 
A - -W. The former case will be referred to as the strong-coupling regime, and 
the latter will be called the Coulomb regime. These expansions may be obtained very 
efficiently by means of a combination of the hypelvirial relations and the Hellmann- 
Rynman theorem. This method does not work in the X -, 0 region, but it is still 
possible to obtain several terms of the small-coupling expansion by means of the 
standard RayleighSchriidinger perturbation theory. These expansions are presented 
in section 2. 
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Next, the Hamiltonian, equation (4), has an infinite set of elementary solutions 
[ll], i.e. solutions of the form of a polynomial times a Gaussian, for selected dues 
of the coupling parameter A. These solutions correspond to the ground state as Well 
as to  excited states, and they are found only for positive values of A. The elementary 
solutions are discussed in section 3. 

Section 4 deals with the renormalized series method (see for example [12]). This 
method is used to extend up to infinity the radius of convergence of series defined 
around the origin. Conversely, it also applies to series defined around infinity, 
extending them up to the origin. The only information required in one of the extremes 
is the leading non-integral power of the dominant term, whereas in the other extreme 
it is necessaly to h o w  many terms of the expansion. The renormalization of the large- 
order expansions determined in section 2 tums out to be a very accurate method to 
determine the ground-state energy in very wide domains and provides an implicit path 
of constructive extrapolation of the perturbative results. These extrapolations cover 
hay of the way, so that the region X + M is connected with the region X i 0, and the 
region X - -M is also connected with the origin, but we have not found a (single) 
direct connection between the X - -M and X i 00 regions. 

Finally, section 5 introduces a new method of dealing with the small-coupling 
perturbation expansion, i.e. in the region X -+ 0, by using the so called Riccari- 
Pad6 method [1>15], which consists in transforming the Schrodinger equation into 
a Riccati equation. The method produces very accurate results in a large domain 
around X = 0, both for positive and negative values of X and, moreover, is able to 
generate approximately several orders of the small-coupling expansion, as well as to 
reproduce the asymptotic expansion in the Coulomb regime. 

A summary of the results and conclusions is presented in section 6. 

2. Large-order expansions 

We start by distinguishing the three regions where perturbative expansion in terms of 
an effective coupling constant may be determined. The regions are: 

6) !!!P CCU!C,%b re@, r":respocding tc !arge 2nd x g a t k  M!UPC s f  A; 
(ii) fhe strong-coupling region, (sc), corresponding to large and positive values of 

(iu) The weak-coupling region, related to small (positive or negative) values of A. 
A; and 

2.1. The Coulomb region 

M e r  a scaiing transformation oi the coordinate r the Hamiitonian equation (4) is 
converted into 

where ,R = A-" i_S the effective mupling constant for the forthcoming perturhatl~n 
expansion. By using the hypelvirial relations, [16-181, one may relate the eigenvalues 
e ( P )  of the Hamiltonian H / X 2  with the expectation value of powers of r, 

2Ne(P)(rN-') = ( 1-2N)(rN-2)+2/3( N + l ) ( r N t ' ) -  N (  N-1)( N-2)(rN-')/2 

(6) 
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where the expectation values are taken with respect to any a a c t  eigenstate of the 
Hamiltonian in square brackets of equation (5) and depend obviously on p. By 
combining equation (6) with the Hellmann-Feynman theorem, the expansion for the 
ground-state energy is given by 

V C Aguilera-Navarro et al 

1 12 1032 348864 211519200 
4 A' A* x 12 x '6 

-- + -- -+ -- 

+-.I 188054861 568 225 331 358 119584 - 
+ Am x= (7) 

valid for large and negative A. We have included only few terms of this expansion 
but it is simple to obtain many more terms with the help of a computer algebra code. 

22. The strongcoupling region 

In the case of krge and positive A, the potential looks like a wide valley centred at 
some large value of r and rising to infinity both near the origin and at large distances. 
It is then convenient to expand the potential around its minimum, 

rmi0 = (x/2)lI3 (8) 

so that 
m 

(9) 
3 

P 
V(rmin + z) = + 32' + 2 C ( - 1 ) k p - 2 z k  

k=3 

where the effective coupling constant is now p = (2/X)113. The resulting potential 
has, apart from the constant term, a term depending on z2 and infinite terms 
depending on higher powers of z multiplied by powers of the effective coupling 
constant. It is now possible to use a special form of the RayleighSchrodinger 
perturbation expansion [l, 51 or, even better, the hypervirial relations [6], to get 
the expansion of the ground-state energy in powers of the effective constant p. We 
show just a few terms of this expansion, namely 

lp2 31p4 2.573~' 168233~' 
36 4 3 2 8  139968+2239488m 

E = + &+ - + __ + - 

+.... (10) 
11 83429lp" 19820152378p12 

+ 125594112 156 I28 328 192 

Again, with the help of computer algebraic codes, one may obtain many more terms 
of this expansion. 

2.3. The weak-coupling apansion 
We have not found a way to use adequately the hypervirial relations in order to 
determine a large-order weak-coupling expansion, around X = 0. However, by using 
standard perturbation theory the known coefficients of the expansion are [l] 
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3. Elementary solutions 

The words 'elementary solutions' refer to particular eigenstates of the Hamiltonian 
equation (4), which appear only for specific values of the coupling constant, and whose 
wavefunction may be expressed as the product of a polynomial times a Gaussian 
factor. 'Ib obtain these elementary solutions let us consider the wavefunction written 
as 

@ ( r )  = exp(-.2/2)P(r) (12) 

and expand p (  r )  in powers of r, 

The resulting recurrence relation is 

(. + 1)(n + 2 ) P , + ,  = XPn+l+ (2n + 1 - m,, (14) 

with the condition p ,  = 0, in order to satisfy the Dirichlet boundary condition at the 
origin, and p, arbitrarily chosen equal to 1. In order to have a finite number of terms 
in the expansion of p ( r )  the two following equations must be satisfied 

p,+t(E, A )  = 0 (15) 

and 

E = 2 n  + 1 n = 2, 3, ... (16) 

so that for all odd and positive values of the energy E > 3, there exist several dues 
of A, solutions of the polynomial equation (15), for which the function p ( r )  is a 
polynomial. There is also a trivial solution for E = 3 which corresponds to X = 0, 
ie. the unperturbed Hamiltonian. Among all these values of X corresponding to a 
given value of the energy, the largest is the one corresponding to the ground state, 
the corresponding wavefunction having no zeros, apart from the zeros at the origin 
and at infinity. 

'hbk t Some elementary mlulions of Ihe Hamiltonian equalion (4), for several energies 
E. ?he second mlumn contains Ihe polynomial equation Io k solved and the third 
displap Ihe largesl solution, wmsponding 10 the ground slate. 

E Eauation x 
s x 2 - 4 = 0  2 
7 X ( P - 2 0 ) = 0  m 
9 ~ 4 - ~ ) ~ + 2 8 8 = 0  ( 3 0 + 6 J T i ) 1 / 2  

11 A( A' - 140x2 + m8) = 0 ( 7 0 + 6 ~ % ) ' / ~  
13 
IS 

h6 - 280h'+ 15280A' - 86403 = 0 
X(X6 - SWX' + S9 184X* - 1316736) = 0 

14.4S0001 026% 
18.503 131 410003 
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?able 1 lists some of the parameters characterizing the elementary solutions, and 
the equation for X to be solved. It is also possible to obtain the resulting wavefunction. 
The simplest cases are 

p ( r , E = 5 )  = r ( l + r )  

and 

p ( ~ ,  E = 7) = r( 1 + JJT + r2), 
These elementary solutions will he of great help to analyse the constructive methods 
for extending the previous perturbation expansions. 

4. The renormalization series approach 

The method of renormalization of series is a mechanism which permits us to match 
two asymptotic expansions of a given function f(x), one expansion defined around 
z = 0 and the other around 1/x = 0. In this manner there results a representation 
for f(z) which may be valid for all values of z. We assume these expansions to be 
o i  the iorm 

and 
m 

f( z) = xa F, 1-" 

j =U 

where b > 0. Moreover we will consider that sufficient coefficients f j  may be 
calculated. Following [12] let us define a new variable y by means of the implicit 
equation 

which maps the x interval [0, m] into the y interval [0,1]. In the above equation IS 
is a positive and, for the moment, arbitrary parameter. By considering that y may be 
expanded both in powers of z and in powers oi  i jz,  t i e  iamiiy oi approximants 

defined in terms of the integer N = O , l ,  ..., satisfy expansions similar to (19) and 
(20). It is also possible to relate the set of coefficients c, of the approximants with 
the coefficients f,, which define the original expansion [16, 191, 
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where (:) = d(d - 1). . . ( d  - i + l)/i! and (3 = 1. 
The choice of IC depends on the problem in hand. In the case in which Fu is 

known, one may fur K by requiring that for a given value of N ,  the approximant gN 
reproduces exactly the value of Fw The latter may be obtained by the condition 

N 

which results in a polynomial equation for K. With this prescription no free 
parameters remain for the renormalization of the series. 

We have applied this method to two of the cases presented in the previous section, 
namely the strong-coupling region and the Coulomb region. In both cases, a small 
modification of the described algorithm is necessaly, because the known expansion is 
of the type of equation (20), involving non-integral powers of the variable, instead of 
the power series expansion of the type of equation (19). The modification is quite 
simple and consists in considering the function z-"f(z) instead of f(z),  and also 
in using as a free variable z = Z - ~ .  Moreover, in both cases the reference value 
to determine the constant IC is that the ground-state energy for the null coupling 
constant is 3. In the case of the strong-coupling expansion, two possible values for IC 
result, which are shown in table 2 (this table corresponds to a renormalization based 
on 34 terms of the strong coupling series). In the case of the Coulomb regime, shown 
in table 3, one finds only one value of IC  tkom the constraint (this table corresponds 
to a renormalization based on 11 terms of the Coulomb regime series). These two 
tables include, for reference, the numerically determined eigenvalues. 

Table 2. The ground-stale energy of lhe spiked mcillillor far several values of A 
wmpuled by means of the strongcoupling wries (semnd mlumn) and the renormalized 
wries mrresponding lo two values of K (third and founh wlumn). ?he last column 
displays the numerically determined eigenvalue. Thc alculalionr based on the series 
wrrespond to a mlal of 34 terms. 

x sc series Renormalized Renormalized Numerical 
K = 3.483 647 594 K =5.96l0053l9 

awl 3.001 094 21 3.001 142 52 3.001 128201 2 
aoi 3.01093902 3.01 I417 20 3.011 2760105 
0.1 3.10906204 3.1 1338601 3.1 12 M6 906 5 

5 1.478 888 02 7.383 056 76 7.386 453 45 7.384lUl7259 
1 5 x IO6 4.041 745 49 4.064 a 9  65 4.057 877 w8 o 

10 10.577 549 39 10.57743951 10.577 824 87 10.577483 394 

A look at the relevant columns of these WO tables shows the high efficiency of 
the renormalization mechanism, the original series being extended up to very small 
d u e s  of the coupiing constant. 

5. The Riccsti-Pad6 method 

The analysis of the previous section has enabled eigenvalues of a very high accuracy 
for all values of the coupling wnstant to be obtained, but was unable to provide a 
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Isbk I Ihe ground-state energy of the spiked d l l a t o r ,  for several values d A, 
computed by means ot Ihe series of the Coulomb region (second column) and the 
renormalized  cries (third mlumn). The last column display the numerically determined 
eigenvalue. Ihe calculations based on the series wrrespond to a lotal of I1  terms. 

x Coulomb series Renormalized Numerical 
K = 488.6806ZS5 

-0.001 2998 909 267 2998 871 542 9 
-0.01 2.989 074 410 2.9887084113 
-0.1 2.889 368 799 2.886 375 159 2 
-1 -5 1027 1.788439401 1.785 205 479 3 
-5 -16.279 10960 -5.816158WO -5.816 1579007 
-10 -24.880 999 06 -24.880 999 070 -24.880 990603 

small-coupling series expansion for the ground-state energy. In this section we apply 
a recently developed method [13-151 based on a transformation of the  Schrodinger 
equation into a Riccati differential equation, and using afterwards a Pad6 analysis of 
the resulting power series. 

The Riccati method was applied many years ago [20], and quite recently [21] was 
also found to be. adequate for studying the strong-coupling expansion of quartic and 
higher anharmonic oscillators. The method presented here introduces two important 
improvements. First, it explicitly includes the Dirichlet boundary condition. Second, 
the Pad6 transformation of the power series may improve the convergence and, as 
will be commented afterwards, is able to generate the lowest elementary solutions. 

Consider the auxiliary function 

4 ( ~ )  = l / r  - V I Q  (25) 

where q is the ground-state wavefunction, and the equivalent equation 

q ( r )  = rexp ( - J r4 ( l )d2 ) .  (26) 

The term T which appears in the right-hand side of equation (26) comes from the 
term 1 / ~  of equation (25) and must he present in order to satisfy the Dirichlet 
boundary condition at T = 0. 

Correspondingly to the Hamiltonian given in equation (4), the new function 4 
must satisfy the Riccati equation 

Since 4 ( ~ )  is regular at r = 0 we may expand it in a Thylor series around that 
point, 

m 

4 ( r )  = x+jTJ (28) 
j = U  

and the coefficients C#J~ have to fulfil the recurrence relation 

. n-l  
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Certainly, plain substitution of this expansion (which is fully determined) in 
equation (26) would give rise to a nonsensical wavefunction. In fact, the indefinite 
integral appearing in the exponential term of equation (26) will give rise to terms of 
the form ~ p ( a 1 r + a 2 r 2 + a 3 ~ + a 4 r 4 + .  . .). Consequently, either the wavefunction is 
non-normalizable, when the coefficient of the highest retained power of r is positive, 
or has an inadequate long-range behaviour, decaying faster than a Gaussian. A way 
to bypass these two abnormal behaviours is to use an appropriate Pad6 approximant 
constructed from series equation (28). 

Surely an example will clarify this statement. Consider the values for E = 5 and 
X = 2, which correspond to the first non-trivial elementary solution of section 3. The 
series corresponding to the function 4 is in this case 

~ ( r ) = - 1 + 2 r - r z + r 3 - r 4 + r s - ~ 6 + r 7 +  . . .  (30) 

and one recognizes quite easily that this series is the expansion of 

(31) 
1 

q + ( r ) = r - -  
l + r '  

In other words, any Pad6 approximant to the series above will degenerate into 
this simple form. Substituting in equation (26) results in the exact wavefunction 
corresponding to the elementary solution under consideration. Finally, a direct 
substitution of the full series equation (30) in equation (26) would have generated a 
nonsensical wavefunction. 

By using a Pad6 approximant instead of the Riccati series expansion we have 
not yet solved the problem of the determination of the eigenvalues. .In fact, the 
set of coefficients 4, is defined in terms of the hvo quantities E and A. A way to 
obtain a quantization condition is to assume that the corresponding Pad6 approximant 
[NIDI, which is defined in terms of N + D + 1 coefficients, produces exactly the 
next term of the expansion, This will result in an implicit equation relating 
E and A. It has been rigorously proved that for certain non-trivial problems this 
approach yields accurate upper and lower bounds to the ground-state energy [13-151. 
Furthermore, for solvable and quasi-solvable problems, one obtains the exact answer 

finite polynomial times an exponential function. 
The quantization condition is quite simple in the case of diagonal Pad6 

approximants [ N / N ] ,  and corresponds to the Hankel determinantal equation 
HN=det(a)=O, where aij  = 4 .  *+]-I . for i , j  = 1,2 ,... , N (see [13-15]). The 
determinant H ,  is a polynomial of degree N(N + 1)/2 in E and of the Same 

h r h  fnr rhn n:nnn.-l..nr nnrl n:nnnf..nrt:nnr nrn..:rlnrl +ha lortor -n hn .=-:++-- n o  n w,,, I", ".I I . ~ I , L * a , Y I ~  a.." I '~'L.LY..CL'Y.l", pL""NI" La.' I a L L I I  -1. "I nllllrll a.7 a 

degree i e@i& equation for N = 2. i_r 

( 4 E  + XZ)(64E2 + U)EXZ + X4 - 576) = 0 (32) 

and for N = 3 
65 A' 713X4 115x6 385x2 

E 6 +  E' (-) + E4 (2304 +3) + E3 (2304 - -) 16 

+ E2 (71x8 - - 909x4 - 297 ) + E  (z8:4 615X6 1395h') 
18432 64 256 4 

A" 103X8 549X4 
589824 1024 8 (33) 
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There are two characteristics Of the Hankel polynomial equations which should be 
mentioned. Fit of all, X always appears in even powers, so that these equations do 
not distinguish between positive and negative A. The space ( A ,  E) has been folded 
around the X = 0 axis, and the roots of the polynomial equations are mixed. The 
second interesting property is the large X limit, which is always of the form E - aX2 
for X + 00, i.e. only the Coulomb solutions emerge in this asymptotic limit. 

N = 4  
-4 

several values of the dimension of the delerminanl. 

A detailed study of the solutions of several equations, corresponding to the lowest 
values of N, reveals other properties which appear systematically. This behaviour is 
exemplified in the three maps shown in figure 1, which correspond to the roots of 
the Hankel equation for N = 2, 3, and 4. At A = 0 the solutions include some of 
the unperturbed harmonic oscillator, namely 3, 7, 11, . . . as well as other spurious 
solutions corresponding to negative energies. The multiplicity of these solutions at 
the origin increases with the order of the Pad6 approximant. When X increases, 
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these degenerate solutions split into several branches, and sometimes they jump to 
the complex plane. Some of these branches may be recognized as physical solutions 
for the ground-state energy for X > 0, as well as for X < 0. Other branches are 
related to excited states. Finally, there are also spurious branches with no connections 
with physical solutions. The way of identifying the nature of a given solution is to 
follow its trajectory from X = 0 up to X -+ W. Due to the Hellmann-Feynman 
theorem, the derivative of the energy with respect to X is given by the expectation 
V ~ I U G  UL l f r  UI UIC cmui ctgensrarc, namery o f i ( n j / a A  = (i;r) ,  this derivaiive being 
always positive. So, monotonically decreasing functions correspond to negative values 
of A. The solutions corresponding to positive X increase for small values of the 
coupling constant, but ultimately they start to decrease and become negative. One 
may reasonably expect these solutions to be acceptable as far as they increase with 
A. In any case, as mentioned above, all branches go to Coulomb-like solutions in the 
limit of very large and negative A. 

In conclusion, it is necessary to extract the appropriate root and also to interpret 
it by looking at its evolution. 'Eible 4 presents a selected set of energies obtained by 
solving the determinantal equation for N = 7. By comparison with the numerically 
determined solutions for the same values of the coupling constant presented in 
tables 2 and 3 one may realize the high quality of the present method. Another very 
appealing characteristic of this method is that the lowest elementary solutions are 
obtained exactly, so that the Riccati-Pad6 method is, in a certain way, equivalent to 
an interpolation of the energy which goes through the eigenvalues of many elementary 
solutions. As a consequence, the quality of the approximation is particularly good for 
values of X near the influence region of a given elementary solution. 

....,..- ^ C I  I~~ L. .L̂  ^..^^.^; -.-. ~ . ~ .  a-,\\ # > \  

lhbk 4 Ground-slate energy for several values o l  X obtained with the Riccati-Pad6 
method, mmponding Lo N = 7. me second and founh mlumm display the energies 
mrrespnding to positive and negative values of t he  mupling constant, respectively. 

X E X E 
0 3 
0.001 3.W112830131 -0.W1 2998 671 494 
aoi 3.01127601073 -0.01 298870841106 
ai 3.1109 -0.1 2886 370 2 
1 4.057906 -1 1.785 205 456 
5 7.384(131741 -5 -5.816 163 

10 10.577483 43 -10 -24,880999 079 

The best way to verify the accuracy of this method for small values of X is to 
calculate the coefficients of the small coupling series E ( A )  = E,,=" E,, A". Certainly, 
and with the exception of the trivial case Eo = 3, these coefficients are not exactly 
obtained with this method, but the accuracy of the coefficients increases very rapidly 
with the degree N of the determinant. Ib obtain the approximate small-coupling 
expansion we susbtitute the above expansion of the energy into the determinant and 
set the coefficients of every power of X in the resulting polynomial equal to zero. 
Inc wctttcicnt ut A.- -  cnaruy vdnwiic> IUI air in = 0, i ,  ... , IV - L. I I I C  wciiictent 
of AN-' k a polynomial equation for E,, and one of the roots of this polynomial 
iq the desired approximation for E, (see the above discussion on the roots). Once 
E, has been correctly identified, the rest of the expansion is simple: if m 2 N, the 

m _  ̂ ^^n_.^_. -f ,." -.."..*,...--:-LA" e.._ "I, n, n -- ---e.!.-. 
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coefficient of A'" is Linear in E,-,+, and depends on the remaining lower order 
coefficients, so that the expansion coefficients are obtained sequentially. 

The resulting coefficients are shown in Bble 5, from E, up to E4, for several 
values of N .  From this table it turns out that the method converges very rapidly, as 
it is able to yield the first coefficients very accurately with determinants of moderate 
order. All the digits shown in the last row of this table coincide with the exact 
expansion coefficients given in equation (11). 
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Tabk 5. Caefficients of the weakcoupling apansion oblained b m  the roots of several 
Riccati-Pad6 deleminants of different dimension N. 

N Ei E2 E3 E4 

3 1.17 -0.072 -0.W 0 
4 1.127 -0.07777 0.W 17 -0.Wo562 
5 1.12841 -0.077 897 0.m 795 I -0.lxQs74 05 
6 1.1283784 -0.077892 8 0.007 957 1 -0.000 574 487 
7 1.128379 19 -0.07789098 0.007956951 -0.ooo5744.527 
8 1.128379 166 -0.077890972 0,0079569550 -0.ooO5744637 

In an analogous way one may study the X -+ 00 limit. As we have already 
commented, the leading term in the solution of the Hankel determinantal equation 
for large X is proportional to X2, the proportionality constants being -1/4, -1/16, 
-1/36, and so on, for the different solutions. In other words, pure Coulomb 
solutions are obtained. It is possible to obtain the corrections to these asymptotic 
forms by expanding the solutions of the determinantal equations in a form similar to 
equation (7), which corresponds to the Coulomb regime. By selecting the appropriate 
root there results the following expansions, corresponding to several values of the 
dimension of the determinant 

E ( N  = 2) = X2 ( - i )  (34) 

1 12 1032 369024 
4 X4 A S  X '2 

E ( N  = 4) = Xz -- + - - - + - + .  ( .  

1 12 1032 348864 +- E ( N = 5 )  = A 2  (-;+ -- - 
A'* A4 A8 

211519200 186697690368 
+ XI8 

- 
X'4 

(37) 

In these equations we have only included up to the first non-exact term of the 
expansion. 

One may thus temptatively conclude that the Riccati-Pad6 method provides a 
scheme extending from X = -m up to values of X larger than zero @ut not up 
to +w). There is, however, a question which we have not been able to answer in 
general, namely whether the solution with the proper small-coupling behaviour will 
smoothly evolve for increasing values of the coupling constant A to the solution with 
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the proper strong-coupling behaviour. A glance at figure 1 reveals that this is not the 
case for the N = 2 case, where the branch which starts at E = 3 at X = 0 moves to 
the first excited state at X = -m, Le. -Xz/16. On the contrary, for the case N = 3, 
the lowest mot has the correct behaviour at both extremes of the interval [0, m]. The 
situation iS more complex in the case N = 4, as can be seen in figure 1. In fact 
there are four roots behaving as -X2 /4  in the Coulomb regime limit. Only two of 
them reproduce the strong-coupling behaviour of equation (7) up to the term 
and these two roots go finally to E = 3 at X = 0. In fact, these two mots can only 
be distinguished in the region of X between 0 and 3, and it is not possible to decide 
which of these mots has the correct slope at X = 0. Nevertheless, it seems that 
when N increases, apart from the contamination hy unphysical branches, the physical 
branches are better reproduced. Note also in the plot labelled N = 4 of figure 1, 
the presence of a branch which evolves from E = 7 at X = 0 to E -+ -X2/16 at 
X - -00, and which corresponds to the first excited level. 

6. Conclusions 

This paper has been devoted to a simple spiked oscillator, characterized hy a 
perturhative term of the Coulomb form X/r, which results in a non-supersingular 
problem. The nature of the perturbation is such that la rgeader  expansions may 
be obtained in the two strong-coupling regimes, Le. very large positive and negative 
values of A, as well as the first terms of the ordinary small-coupling expansion. 
Moreover, there is an infinite class of elementary solutions for specific, in general 
irrational, values of the coupling constant. 

The aim of the paper was to find constructive methods to extend the convergence 
radius of these expansions. The use of the renormalization series method has provided 
an implicit, and somewhat involved, path to connect the strong-coupling regime 
(A - 00) with the small-coupling regime, as well as to connect the Coulomb regime 
(A - -00) with the small-coupling regime. Unfortunately, no way seems to exist to 
connect the 00 and the -00 regions directly. 

Whereas the precision of the renormalized series expansion is acceptable for small 
values of A, it worsens near the origin. This region, however, was studied with the 
Riccati-Pad6 method. We must recognize several uncomfortable aspects of this latter 
approach, such as the presence of unphysical roots as well as the folding of the X 
domain [-m, m] into the domain [0, CO]. Because of these two facts, the identification 
of the appropriate root for a given value of X is not immediate, requiring the study of 
the evolution of the root with the variation of X to identify it correctly. Nevertheless, 
it is very satisfying that, for some elementary solutions, depending on the degree of 
the determinantal equation used, both the energy and the wavefunction are obtained 
exactly. This method seems t0,be very promising, but it still requires deeper study. 

The next step would be the study of stronger spikes X / T " .  The case X/r* is 
trivial, because the Hamiltonian may be solved exactly. However the fact that the 
renormalization series approach is able to exactly reproduce the small-coupling series 
from the strong-coupling expansion for this spike is not so trivial. One is tempted 
to say that the domain of 01 E [0,2] may be accurately studied with the help of 
the renormalization method and the Riccati-Pad6 method. The real challenge is the 
supersingular region, which starts at a = 5/2. f i r  this and higher values of the 
exponent the small-coupling series contains fractional powers or logarithmic terms of 
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the coupling constant. A new renormalization mechanism must be invented to cover 
these cases. 
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