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Abstract. The charged oscillator, defined by the Hamiltonian H = —d®/drl+r? 4 A /r
in the domain [0, co], is a particular case of the family of spiked oscillators, which does
not behave as a supersingular Hamiltonian. This problem is analysed around the three
regions A — oo, A — 0 and A — --co by using Rayleigh-Ritz large-order perturbative
expansions. A path is found to connect the large A regions with the small A region by
means of the renormalization of the series expansions in A. Finally, the Riccati-Padé
method is used to construct an implicit expansion around A — 0 which extends to very
large vailues of |A|

1. Introduction

The family of quantum Hamiltonians known with the name of spiked harmonic
oscillators is represented by the general Hamiltonian

a? A '

H=-13+ r+ e (1)
defined in the one-dimensional half space [0, o], the eigenfunctions obeying Dirichlet
boundary conditions. The Hamiltonian is characterized by means of two parameters,
A which plays the role of a coupling constant and « > 0 which controls the type of
the singularity of the potential at the origin.

The study for small X reveals the presence of two different behaviours depending

on the value of o. When o is smaller than 5/2, the ground-state energy has a power

series expansion in terms of A. Not very much is known about these expansions for
a < 5/2, with the exception of the exactly solvable case o = 2, which generates a
series expansion in powers of X, its radius of convergence being 1/4. Nevertheless,
plain application of the Rayleigh-Schrodinger perturbation theory does not generate
the correct perturbative corrections to the wavefunction [1].
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The region a 2 5/2 is known by the name of supersingular. Klauder [2]
and Detwiler and Klauder [3] realized that problems of this kind, or with similar
behaviour, had very special properties in the small-coupling regime. Later, Harrell
[4] was able to construct a special form of singular perturbation theory to determine
the leading term of the ground-state energy for smali A, which turned out to depend
on non-integral powers of the coupling parameter or even on logarithms of the
coupling constant. Only very few terms of the expansion may be determined by using
the method of Harrell {4]. Nevertheless, it is a simple task to generate many terms of
the expansion in terms on an effective coupling constant in the strong-coupling regime
[5, 6], ie. for very large values of .

Our interest in the family of spiked oscillators was motivated by the analogy
between the o = 5/2 small-coupling expansion [4]

2AI(1/4)  16A%In A
T'(1/2) r'(1/2)

Ela=5/2)=3+ + 0O()\?) 2)
and the low-density expansion of the energy per particle of a many-body boson system
at zero temperature [7)

E/N = (2nh% fm)pa |1 + C,(pa®)V? + C,pa® n(pa’) + Cypa® + - - 3
2 3 (3)

where g is the particle density and «a is the scattering length of the two-body problem
with the bare interaction. Similar expansions have also been obtained for fermion
systems [7).

The low-density expansions are not immediately useful for studying real many-
body systems, in particular because in most cases the scattering length corresponding
to the two-body system may be negative, so that equation (3) is meaningless. However,
the use of constructive extrapolants, mainly based on Padé approximants of non-
integral powers of the series equation (3), has proven to be a very precise method
to determine the equation of state of several quantum systems near the equilibrium
density [8-10]. For this reason, our interest will be focused on the study of connections
between the expansions determined around finite (actually null} and infinite values
of ), for a given value of the exponent c.

In this work we are going to concentrate on a very simple case, namely o = 1.
The Hamiltonian equation (1) looks extremely simple, being a confined Coulomb
potential,

R
H=-s+r+ . )

The amount of information which may be obtained for this simple spiked oscillator
is quite impressive. First of all, it is possible to obtain perturbative expansions for the
ground-state energy (and also for excited states) around X - co as well as around
A — —oco. The former case will be referred to as the strong-coupling regime, and
the latter will be called the Coulomb regime. These expansions may be obtained very
efficiently by means of a combination of the hypervirial relations and the Hellmann-
Feynman theorem. This method does not work in the A — 0 region, but it is still
possible to obtain several terms of the small-coupling expansion by means of the
standard Rayleigh-Schrodinger perturbation theory. These expansions are presented
in section 2.
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Next, the Hamiltonian, equation (4), has an infinite set of elementary solutions
{11], ie. solutions of the form of a polynomial times a Gaussian, for selected values
of the coupling parameter A. These solutions correspond to the ground state as well
as to excited states, and they are found only for positive values of A. The elementary
solutions are discussed in section 3.

Section 4 deals with the renormalized series method (see for example [12]). This
method iS used to extend up to infinity the radius of convergence of series defined
around the origin. Conversely, it also applies to series defined around infinity,
extending them up to the origin. The only information required in one of the extremes
is the leading non-integral power of the dominant term, where¢as in the other extreme
it is necessary to know many terms of the expansion. The renormalization of the large-
order expansions determined in section 2 turns out to be a very accurate method to
determine the ground-state energy in very wide domains and provides an implicit path
of constructive extrapolation of the perturbative results. These extrapolations cover
half of the way, so that the region A — oo is connected with the region A — 0, and the
region A — —oc is also connected with the origin, but we have not found a (single)
direct connection between the A — —oco and A — oo regions.

Finally, section 5 introduces a new method of dealing with the small-coupling
perturbation expansion, ie. in the region A — 0, by using the so called Riccati-
Padé method [13-15], which consists in transforming the Schrddinger equation into
a Riccati equation. The method produces very accurate results in a large domain
around A = 0, both for positive and negative values of A and, moreover, is able to
generate approximately several orders of the small-coupling expansion, as well as to
reproduce the asymptotic expansion in the Coulomb regime.

A summary of the results and conclusions is presented in section 6.

2. Large-order expansions

We start by distinguishing the three regions where perturbative expansion in terms of
an effective coupling constant may be determined. The regions are:

(i) the Coulomb region, corresponding to large and negative values of A;

(ii) the strong-coupling region, (sC), corresponding to large and positive values of
A; and
(iii) The weak-coupling region, related to small (positive or negative) values of A.

2.1. The Coulomb region

After a scaling transformation of the coordinate » the Hamiltonian equation (4) is
converted into
dz

H—»)\z[—‘d—r'_-—l+ﬁ ] (5)

where 3 = A~* is the effective coupling constant for the forthcoming perturbation
expansion. By using the hypervirial relations, [16-18], one may relate the eigenvalues
e(3) of the Hamiltonian H /? with the expectation value of powers of r

Ne(B)rN =Y = (1=2N){rV 1+ 28(N + ){rV ) - N(N - 1)(N =2){rV-3)/2
(6)
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where the expectation values are taken with respect to any exact eigenstate of the
Hamiltonian in square brackets of equation (5) and depend obviously on &. By

combining equation (6) with the Hellmann-Feynman theorem, the expansion for the
ground-state energy is given by

1 12 1032 348864 211519200
BO) =¥ [-3+ 51— S + - 2ET
188054861568 225337358179584
+ A B A to @

valid for large and negative A. We have included only few terms of this expansion
but it is simple to obtain many more terms with the help of a computer algebra code.

2.2. The strong-coupling region

In the case of large and positive A, the potential looks like a wide valley centred at
some large value of r and rising to infinity both near the origin and at large distances.
It is then convenient to expand the potential around its minimum,

Tmin = (A/2)!? ®

so that

3 = - k-2 k
Virg, + ) = =t 3¢t +2) (-1)Fpti2t 9)
k=3

where the effective coupling constant is now g = (2/X)!/3. The resulting potential
has, apart from the constant term, a term depending on x2 and infinite terms
depending on higher powers of = multiplied by powers of the effective coupling
constant. It is now possible to use a special form of the Rayleigh-Schrodinger
perturbation expansion [1, 5] or, even better, the hypervirial relations [6], to get
the expansion of the ground-state energy in powers of the effective constant . We
show just a few terms of this expansion, namely

37u? + 2573u%  168233u8
4323 139968 ' 223948827

1183429710 1982015237+/3u!2
725594 112 156 728328192

Again, with the help of computer algebraic codes, one may obtain many more terms
of this expansion.

2
E=3u‘2+\/§+?—%+

(10)

2.3. The weak-coupling expansion

We have not found a way to use adequately the hypervirial relations in order to
determine a large-order weak-coupling expansion, around A = (. However, by using
standard perturbation theory the known coefficients of the expansion are [1]

— 7))2
E=3+%~(2+2'“: DX 4o (11)
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3. Elementary solutions

The words ‘elementary solutions’ refer to particular eigenstates of the Hamiltonian
equation (4), which appear only for specific values of the coupling constant, and whose
wavefunction may be expressed as the product of a polynomial times a Gaussian
factor. To obtain these elementary solutions let us consider the wavefunction written
as

U(r) = exp(—r*/2)p(r) (12)

and expand p(r) in powers of r,
o0
p(r) =3 p,r". (13}
n=0

‘The resulting recurrence relation is
(n+ D n+p,pn = AP +2n+1- Elp, (14)

with the condition py = 0, in order to satisfy the Dirichlet boundary condition at the
origin, and p, arbitrarily chosen equal to 1. In order to have a finite number of terms
in the expansion of p(r) the two following equations must be satisfied

Pny1(£,A) =0 (15)
and
E=2n+1 n=23,... (16)

so that for all odd and positive values of the energy E > 3, there exist several values
of A, solutions of the polynomial equation (15), for which the function p(r) is a
polynomial. There is also a trivial solution for £ = 3 which corresponds to A = (,
ie. the unperturbed Hamiltonian. Among all these values of A corresponding to a
given value of the energy, the largest is the one corresponding to the ground state,
the corresponding wavefunction having no zeros, apart from the zeros at the origin
and at infinity.

Table 1. Some elementary solutions of the Hamillonian equation (4), for several energies
E, The second column contains the polynomial equation to be solved and the third
displays the largest solution, corresponding to the ground state.

E Equation A

5 Al-4=0 2

7 AN =90 V20

9 A-60A24288=0 (30 4 6/ 12
11 A(A* — 14027 +2848) = 0 (70 4 6/57)1/2
13 X5 — 28027 4 152802 — 86400 =0 14.450 001 026 966

15 A(AS—504AY 45918402 — 1316736) =0 [8.503 131 410003
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Table 1 lists some of the parameters characterizing the elementary solutions, and
the equation for X to be solved. It is also possible to obtain the resulting wavefunction.
The simplest cases are

p(r,E=5)=r(1+r) (17)
and
p(r, E=T) =r(1+V5r 4 r2). (18)

These elementary solutions will be of great help to analyse the constructive methods
for extending the previous perturbation expansions.

4. The renormalization series approach

The method of renormalization of series is a mechanism which permits us to match
two asymptotic expansions of a given function f(z), one expansion defined around
x = 0 and the other around 1/x = 0. In this manner there results a representation
for f(«) which may be valid for all values of z. We assume these expansions to be
of the form

f(x)=)_ f;z’ (19)
i=0
and
f(z) =z f Fyz= (20)
=0

where b > 0. Moreover we will consider that sufficient coefficients f; may be
calculated. Following [12] let us define a new variable y by means of the implicit
equation

_ y
= RO 21

which maps the z interval [0,00] into the y interval [0,1]. In the above equation K
is a positive and, for the moment, arbitrary parameter. By considering that y may be
expanded both in powers of x and in powers of 1/, the family of approximants

gn(z) = [ (1- y)llb]—aicﬂy" (22)

m=0

defined in terms of the integer N = 0,1,..., satisfy expansions similar to (19) and
(20). It is also possible to relate the set of coefficients ¢, of the approximants with
the coefficients f, which define the original expansion [16, 19},

___ZKa ;( l)n—-J (( J)/b) J (23)

J
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where (§) =d(d—1)---(d—i+1)/i!and (}) = 1.

The choice of K depends on the problem in hand. In the case in which Fj is
known, one may fix K by requiring that for a given value of IV, the approximant g,
reproduces exactly the value of F;. The latter may be obtained by the condition

N
- . U o
Fo= Jim o ton(@) = 3 e

~
[
N

m={

which results in a polynomial equation for K. With this prescription no free
parameters remain for the renormalization of the series.

We have applied this method to two of the cases presented in the previous section,
namely the strong-coupling region and the Coulomb region. In both cases, a small
modification of the described algorithm is necessary, because the known expansion is
of the type of equation (20), involving non-integral powers of the variable, instead of
the power series expansion of the type of equation (19). The modification is quite
simple and consists in considering the function z~° f(x) instead of f(x), and also
in using as a free variable z = x~%. Moreover, in both cases the reference value
to determine the constant K is that the ground-state energy for the null coupling
constant is 3. In the case of the strong-coupling expansion, two possible values for K
result, which are shown in table 2 (this table corresponds to a renormalization based
on 34 terms of the strong coupling series). In the case of the Coulomb regime, shown
in table 3, one finds only one value of K from the constraint (this table corresponds
to a renormalization based on 11 terms of the Coulomb regime series). These two
tables include, for reference, the numerically determined eigenvalues.

Table 2. The ground-state energy of the spiked oscillator for several values of A
computed by means of the strong-coupling series (second column) and the renormalized
series corresponding to two values of K (third and fourth column). The last column
displays the pumerically determined eigenvalue. The calculations based on the series
correspond to a total of 34 terms.

A SC series Renormalized Renormalized Numetical
K = 3,483 647994 K =5.961005319
0.001 3.001 (94 21 3.001 142 52 3.001 1283012
0.01 3.01093902 301141720 3011276 0105
0.1 3.109 062 4 3113386 01 31120669065
1 5% 108 4.047 745 49 4.064 649 65 40578770080
5 747888802 738305676 7.386453 45 7.384 0317259
10 10.577 54939 10.577 439 51 10.577824 87 10.577 483 394

A look at the relevant columns of these two tables shows the high efficiency of
the renormalization mechanism, the original series being extended up to very small
values of the coupling constant.

5. The Riccati-Padé method

The analysis of the previous section has enabled eigenvalues of a very high accuracy
for all values of the coupling constant to be obtained, but was unable to provide a
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Table 3. The ground-state energy of the spiked oscillator, for several values of A,
computed by means of the series of the Coulomb region (second column)} and the
renormalized series (third column). The last column displays the numerically determined
eigenvalie. The calculations based on the series correspond 10 a otal of 11 terms.

A Coulomb series Renormalized Numerical
K = 488.6806255
-0.001 2.998 909 267 2998 8715429
~0.01 2989074 410 2988 7084113
-0l 2.889 368 799 28863751592
-1 ~5 x 1077 1,788 439 401 1.785 205479 3
-5 -16.279 10960 —-5.816 158 040 —5.816 1579007
-10 —24.88099906  —24.880999 070 - 24,880 990 603

small-coupling seties expansion for the ground-state energy. In this section we apply
a recently developed method [13-15] based on a transformation of the Schrodinger
equation into a Riccati differential equation, and using afterwards a Padé analysis of
the resulting power series.

The Riccati method was applied many years ago [20], and quite recently [21] was
also found to be adequate for studying the strong-coupling expansion of quartic and
higher anharmonic oscillators. The method presented here introduces two important
improvements. First, it explicitly includes the Dirichlet boundary condition. Second,
the Padé transformation of the power series may improve the convergence and, as
will be commented afterwards, is able to generate the lowest elementary solutions.

Consider the auxiliary function

$(r)y=1/r-V'/¥ @5
where ¥ is the ground-state wavefunction, and the equivalent equation
r
¥(r) = rexp (-/ (1) dt) . (26)

The term r which appears in the right-hand side of equation (26) comes from the
term 1/r of equation (25) and must be present in order to satisfy the Dirichlet
boundary condition at r = 0.
Correspondingly to the Hamiltonian given in equation (4), the new function ¢

must satisfy the Riccati equation

d A

af_—_¢+¢2 ri-=+E. 27)

r

Since ¢(r) is regular at » = 0 we may expand it in a Taylor series around that

point,
$(r) = ;7 (28)
i=0

and the coefficients ¢; have to fulfil the recurrence relation

—

1 n-

n+2
i

¢n =

[¢ ¢ -j-1" n3+E6nl_)\5n0] n=0,1,... (29)

i
=
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Certainly, plain substitution of this expansion (which is fully determined) in
equation (26) would give rise to a nonsensical wavefunction. In fact, the indefinite
integral appearing in the exponential term of equation (26) will give rise to terms of
the form exp(a; v+ a;r?+ ayr’ 4 a,r*+- - -). Consequently, either the wavefunction is
non-normalizable, when the coefficient of the highest retained power of r is positive,
or has an inadequate long-range behaviour, decaying faster than a Gaussian. A way
to bypass these two abnormal behaviours is to use an appropriate Padé approximant
constructed from series equation (28).

Surely an example will clarify this statement. Consider the values for E = 5 and
A = 2, which correspond to the first non-trivial elementary solution of section 3. The
series corresponding to the function ¢ is in this case

dry=—14+2r—-r 4+ -4 -4 4. (30)
and one recognizes quite easily that this series is the expansion of
1
=r—- —. 31
or)=r- 2 (1)

In other words, any Padé approximant to the series above will degenerate into
this simple form. Substituting in equation (26) results in the exact wavefunction
corresponding to the elementary solution under consideration. Finally, a direct
substitution of the full series equation (30) in equation (26) would have generated a
nonsensical wavefunction.

By using a Padé approximant instead of the Riccati series expansion we have
not yet solved the problem of the determination of the eigenvalues, In fact, the
set of coefficients ¢,, is defined in terms of the two quantities £ and A, A way to
obtain a quantization condition is to assume that the corresponding Padé approximant
[N/ D), which is defined in terms of N + D 4 1 coefficients, produces exactly the
next term of the expansion, ¢, . This will result in an implicit equation relating
E and A. It has been rigorously proved that for certain non-trivial problems this
approach yields accurate upper and lower bounds to the ground-state energy [13-15].
Furthermore, for solvable and quasi-solvable problems, one obtains the exact answer

hrth fAar tha atmanumina nd aimanfunctinne nraavidad tho lattor fsan ha writtan ao
oot 107 o Uls\auvnlul..u anag ulb\.uuuu\.-tlunc, PLUYIULG uiv il Lali o8 Wiiukll a5 a

finite polynomial times an exponential function.

The quantization condition is quite simple in the case of diagonal Padé
approximants {N/N], and corresponds to the Hankel determinantal equation
Hy=det(2)=0, where a;; = ¢,.; for i,j = 1,2,..., N (see [13-15]). The
determinant H,, is a polynomial of degree N(N + 1)/2 in E and of the same
r_ig.grf_ze. in A2, The mmhmr eauannn for N=21s

(4E + AD(GAE2 + 20EX2 + X4 - 576) = 0 (32)
and for N =3
652? 71324 11508 3852
6 5 4 3
E+E ( 7 )+E (2304 +3)+E (2304 16 )
S TIAE 909x4 S5A0 615X6 1395)2
z —— — ——————— — —-—
+E (18432 64 297) + E(36864 256 4 )

+ 1701) =0, (33)

+ A2 10328 549)%
589824 1024 8
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There are two characteristics of the Hankel polynomial equations which should be
mentioned. First of ali, A always appears in even powers, so that these equations do
not distinguish between positive and negative X. The space (), E) has been folded
around the A = 0 axis, and the roots of the polynomial equations are mixed. The
second interesting property is the large A limit, which is always of the form E — a)?
for A — oo, ie. only the Coulomb solutions emerge in this asymptotic limit.

1m0
HtH

E

|

s AN

(X!
L-
-
.
o
»
-
[+ ]

Figure 1. The solution of the Hankel determinantal
equations related to the Riccati-Padé method for
N=4 \ several values of the dimension of the determinant.
3 ) 3 T 5 15 The varicus rools of the polynomial equation in E

are piotted against A.

-4

A detailed study of the solutions of several equations, corresponding to the lowest
values of N, reveals other properties which appear systematically. This behaviour is
exemplified in the three maps shown in figure 1, which correspond to the roots of
the Hankel equation for N = 2, 3, and 4. At A = O the solutions include some of
the unperturbed harmonic oscillator, namely 3, 7, 11, ... as well as other spurious
solutions corresponding to negative energies. The multiplicity of these solutions at
the origin increases with the order of the Padé approximant. When A incCreases,
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these degenerate solutions split into several branches, and sometimes they jump to
the complex plane. Some of these branches may be recognized as physical solutions
for the ground-state energy for A > 0, as well as for A < 0. Other branches are
related to excited states. Finally, there are also spurious branches with no connections
with physical solutions. The way of identifying the nature of a given solution is to
follow its trajectory from A = 0 up t0 A — oo. Due to the Helimann-Feynman
theorem, the derivative of the energy with respect to A is given by the expectation
vajue of 1/7 in the exact eigenstate, naimely d E{(A)/dA = (1/r}, this derivative being
always positive. So, monotonically decreasing functions correspond to negative values
of A. The solutions corresponding to positive X increase for small values of the
coupling constant, but ultimately they start to decrease and become negative. One
may reasonably expect these solutions to be acceptable as far as they increase with
A. In any case, as mentioned above, all branches go to Coulomb-like solutions in the
limit of very large and negative A,

In conclusion, it is necessaty to extract the appropriate root and also to interpret
it by looking at its evolution. Table 4 presents a selected set of energies obtained by
solving the determinantal equation for N = 7, By comparison with the numerically
determined solutions for the same values of the coupling constant presented in
tables 2 and 3 one may realize the high quality of the present method. Another very
appealing characteristic of this method is that the lowest elementary solutions are
obtained exactly, so that the Riccati-Padé method is, in a certain way, equivalent to
an interpolation of the energy which goes through the eigenvalues of many elementary
solutions. As a consequence, the quality of the approximation is particularly good for
values of A near the infiuence region of a given elementary solution.

Table 4. Ground-state energy for several values of A obtained with the Riccati-Padé
method, corresponding to NV = 7. The second and fourthi columns display the energies
corresponding to positive and negative values of the coupling constant, respectively,

A E A E
0 3
0.001 3.001 128 301 31 —0.001 2998871494
0.01 3.011276 01073 =001 298870841106
01 3.1109 -0.1 28863702
1 4.057 906 -1 1.785 205 456
5 7.384 (31 741 -5 —5.816 163

10 10.577483 43 -10 —24.880999079

The best way to verify the accuracy of this method for small values of ) is to
calculate the coefficients of the small coupling series E(X) =}~ _, E, A™. Certainly,
and with the exception of the trivial case E, = 3, these coefficients are not exactly
obtained with this method, but the accuracy of the coefficients increases very rapidly
with the degree N of the determinant. Tob obtain the approximate small-coupling
expansion we susbtitute the above expansion of the energy into the determinant and
set the coefficients of every power of X in the resulting polynomial equal to zero.
The coefficient of A™ exacily vamishes for ali m = 0,1,..., N ~ 2. The tweficient
of A¥-! is a polynomial equation for E;, and one of the roots of this polynomial
is the desired approximation for E, (see the above discussion on the roots). Once
E, has been correctly identified, the rest of the expansion is simple: if m 2> N, the
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coefficient of A™ is linear in E, 5., and depends on the remaining lower order
coeflicients, so that the expansion coefficients are obtained sequentially,

The resulting coefficients are shown in Table 5, from E, up to E,, for several
values of N. From this table it turns out that the method converges very rapidly, as
it is able to yield the first coefficients very accurately with determinants of moderate
order. All the digits shown in the last row of this table coincide with the exact
expansion coefficients given in equation (11).

Table 5. Coefficients of the weak-coupling expansion obtained from the roots of several
Riccati-Padé determinants of different dimension N.

N E, Ey E, E,

3 117 -0.072 -0.002 0

4 1127 -0.07777 0.00817 -0.000562

5 1.12841 —0.077897 0.0007951 ~0.000574 05

6 1.1283784 ~0.0778908 0.0079571 —0.000 574 487

7 112837919 —0.077 89098 0.007 956 951 =0.000574 4627
8 1.128 379 166 —0.077 890972 0.007956 9550 —0.000574 4637

In an analogous way one may study the A — co limit. As we have already
commented, the leading term in the solution of the Hankel determinantal equation
for large ) is proportional to A2, the proportionality constants being —1/4, —1/16,
—1/36, and so on, for the different solutions. In other words, pure Coulomb
solutions are obtained. It is possible to obtain the corrections to these asymptotic
forms by expanding the solutions of the determinantal equations in a form similar to
equation (7), which corresponds to the Coulomb regime. By sclecting the appropriate
root there results the following expansions, corresponding to several values of the
dimension of the determinant

E(N=2)=X(-}) (34)
1,12 1032 278304
E(N=3).—.A2( it~ oF +_AT+"') (35)
1 12 1032 369024
E(N=4)=)\2( itw - oF + —5 T +) (36)
12 1032 = 348864
2
E(N=5)= 2\ (-—— I v
211519200 186697690368 47
- 314 2B B 37
In these equations we have only included up to the first non-exact term of the
expansion.
One may thus temptatively conclude that the Riccati-Padé method provides a
scheme extending from A = —oo up to values of X larger than zero (but not up

to +oo). There is, however, a question which we have not been able to answer in
general, namely whether the solution with the proper small-coupling behaviour will
smoothly evolve for increasing values of the coupling constant A to the solution with
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the proper strong-coupling behaviour. A glance at figure 1 reveals that this is not the
case for the NV = 2 case, where the branch which starts at £ =3 at XA = 0 moves to
the first excited state at A = —o0, i.e. —=A2/16. On the contrary, for the case N = 3,
the lowest root has the correct behaviour at both extremes of the interval [0, co]. The
situation 8 more complex in the case N = 4, as can be seen in figure 1. In fact
there are four roots behaving as —A?/4 in the Coulomb regime limit. Only two of
them reproduce the strong-coupling behaviour of equation (7) up to the term A~5,
and these two roots go finally to £ = 3 at A = 0. In fact, these two roots can only
be distinguished in the region of A between 0 and 3, and it is not possible to decide
which of these roots has the correct slope at A = 0. Nevertheless, it seems that
when N increases, apart from the contamination by unphysical branches, the physical
branches are better reproduced. Note also in the plot labelled N = 4 of figure 1,
the presence of a branch which evolves from £ = 7at A =0to E — —~A2/16 at
A — —oo, and which corresponds to the first excited level,

6. Conclusions

This paper has been devoted to a simple spiked oscillator, characterized by a
perturbative term of the Coulomb form A/, which results in a non-supersingular
problem. The nature of the perturbation is such that large-order expansions may
be obtained in the two strong-coupling regimes, i.e. very large positive and negative
values of A, as well as the first terms of the ordinary small-coupling expansion.
Moreover, there is an infinite class of elementary solutions for specific, in general
irrational, values of the coupling constant.

The aim of the paper was to find constructive methods to extend the convergence
radius of these expansions. The use of the renormalization series method has provided
an implicit, and somewhat involved, path to connect the strong-coupling regime
(A — oo) with the small-coupling regime, as well as to connect the Coulomb regime
(A — —oo) with the small-coupling regime. Unfortunately, no way seems to exist to
connect the oo and the —oo regions directly.

Whereas the precision of the renormalized series expansion is acceptable for small
values of 1A, it worsens near the origin. This region, however, was studied with the
Riccati-Padé method. We must recognize several uncomfortable aspects of this latter
approach, such as the presence of unphysical roots as well as the folding of the A
domain [-00, co] into the domain [0, co]. Because of these two facts, the identification
of the appropriate root for a given value of A is not immediate, requiring the study of
the evolution of the root with the variation of A to identify it correctly. Nevertheless,
it is very satisfying that, for some ¢lementary solutions, depending on the degree of
the determinantal equation used, both the energy and the wavefunction are obtained
exactly. This method seems to be very promising, but it still requires deeper study.

The next step would be the study of stronger spikes A/+*. The case A/r? is
trivial, because the Hamiltonian may be solved exactly. However the fact that the
renormalization series approach is able to exactly reproduce the small-coupling series
from the strong-coupling expansion for this spike is not so trivial. One is tempted
to say that the domain of o € [0,2] may be accurately studied with the help of
the renormalization method and the Riccati-Padé method. The real challenge is the
supersingular region, which starts at a = 5/2. For this and higher values of the
exponent the small-coupling series contains fractional powers or logarithmic terms of
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the coupling constant. A new renormalization mechanism must be invented to cover
these cases.
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